Union S 2 Mo / UV 305

böhlerwelding

SAW wire/flux combination, low-alloyed

. .

Classifications

SAW solid wire		SAW flux		
EN ISO14171-A	AWS A5.17	EN ISO 14174		
S2Mo	EA2	SA AR 1 76 AC H5		
SAW wire/flux combination				
EN ISO14171-A	AWS A5.23			
S 46 0 AR S2Mo	F8A0-EA2-A2			

Characteristics and typical fields of application

Union S 2 Mo is a coppered low alloyed wire with 0,5%Mo.

UV 305 is an aluminate-rutile agglomerated flux suited for direct and alternating current.

The flux is donating Mn and Si to the weld pool (desoxidation) and therefore it is less sensitive for porosity issues due to dirt and rust on the plate.

Union S 2 Mo / UV 305 is a wire-flux combination for submerged-arc welding of unalloyed and low alloyed steel grades.

Very good slag detachability and nice bead appearance.

It is recommended to be used for single-wire or Twin-arc welding with small wire diameter (e.g. with 2,0 mm) with high welding speed, especially for fillet welding in low wall thickness. (<10 mm).

It is particularly well-suited to welding of "water walls" (tube-web-tube joint) for steam water-tube boiler.

Grain size: EN ISO 14174: 4 - 14 (0.4 - 1.4 mm)Basicity (Boniszewski): 0.7 (Mol-%) / 0.6 (Weight-%) Main constituents in %: SiO₂ + TiO₂ = 30% / Al₂O₃ + MnO = 55% / CaF₂ + CaO + MgO = 8%

Base materials

General and fine grained structural steels, shipbuilding steels, pipe steels up to 460 MPa minimum yield strength and boiler plates and tubes alloyed with 0,5% Mo like 16 Mo3.

Typical analysis of the wire and of all-weld metal (wt%)					
	C	C i	Mo		

	C	31		IVIO
Wire %	0.10	0.12	1.0	0.50
Weld metal %	0.06	0.5	1.2	0.45

Mechanical properties of all-weld metal

Heat- treatment	Yield strength R _e	Tensile strength R_m	Elongation A ($L_0=5d_0$)	Impact work ISO-V (J) (Average value from 3 test results)	
	MPa	MPa	%	0°C	-18 °C
AW	<u>></u> 460 (510)	<u>></u> 540 (590)	<u>></u> 20 (24)	<u>></u> 47 (65)	<u>></u> 27 (35)

Operating data

	Polarity: DC / AC	Redrying of flux: 300 – 350 °C / 2 hrs min.	Packing: 25 kg plastic bag	ø mm 2.5 3.0 4.0
Approvals				

All information provided is based upon careful investigation and intensive research.

However, we do not assume any liability for correctness and information is subject to change without notice.